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A rigid body whose length (21) is large compared with its breadth (represented 
by R,) is straight but is otherwise of arbitrary shape. It is immersed in fluid 
whose undisturbed velocity, a t  the position of the body and relative to it, may 
be either uniform, corresponding to  translational motion of the body, parallel 
or perpendicular to  the body length, or a linear function of distance along the 
body length, corresponding to an ambient pure straining motion or to rotational 
motion of the body. Inertia forces are negligible. It is possible to  represent the 
body approximately by a distribution of Stokeslets over a line enclosed by the 
body; and then the resultant force required to  sustain translational motion, the 
net stresslet strength in a straining motion, and the resultant couple required 
to sustain rotational motion, can all be calculated. I n  the fist approximation 
the Stokeslet strength density F(x) is independent of the body shape and is of 
order ~ U E ,  where U is a measure of the undisturbed velocity and B = (log 21/R0)-l. 
In higher approximations, F(x) depends on both the body cross-section and the 
way in which it varies along the length. From an investigation of the ‘inner’ 
flow field near one section of the body, and the condition that it should join 
smoothly with the ‘outer’ flow which is determined by the body as a whole, i t  
is found that a given shape and size of the local cross-section is equivalent, in 
all cases of longitudinal relative motion, to a circle of certain radius, and, in 
all cases of transverse relative motion, to an ellipse of certain dimensions and 
orientation. The equivalent circle and the equivalent ellipse may be found from 
certain boundary-value problems for the harmonic arid biharmonic equations 
respectively. The perimeter usually provides a, better measure of the magnitude 
of the effect of a non-circular shape of a cross-section than its area. Explicit 
expressions for the various integral force parameters correct to the order of e2 
are presented, together with iterative relations which allow their determination 
to  the order of any power of E .  For a body which is ‘longitudinally elliptic’ 
and has uniform cross-sectional shape, the force parameters are given ex- 
plicitlyto the order of any power of E ,  and, for a cylindrical body, to the order of e3. 

1. Introduction 
Slender-body theory for Stokes flow with negligible inertia forces was initiated 

by Burgers (1938), but appears to  have remained almost unnoticed for many 
years after his work. The elementary form of the theory suggested by Burgers 
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was improved a little by Broersma (1960a, b) ,  and the theory in more genera1 
form has recently been revived and developed considerably (Tuck 1964, 1970; 
Ta.ylor 1969; Cox 1970a, b;  Tillett 1970). All this published work is concerned 
with slender bodies of circular cross-section. Since an important potential 
application of the results is to naturally occurring particles, i t  is desirable to 
be able to assess the consequences of a non-circular shape of the cross-section 
of the body. It is intuitively evident that, as the body cross-section shrinks to a 
point, the effect of the cross-sectional shape on integral parameters such as the 
drag on the body in translational motion will diminish, but the magnitude and 
nature of this residual effect need examination. 

Part of the current interest in slender-body theory for Stokes flow derives 
from its use in work on the mechanics of suspensions (see, for instance, Goldsmith 
& Mason 1967). I n  that subject one is often concerned with the flow due to  
force-free rigid particles immersed in a pure straining motion and also with the 
flow due to the rotation of a rigid particle on which a couple is exerted by external 
means. In  this paper we shall therefore consider the implications of slender-body 
theory for these two kinds of flow (both of which involve a linear variation of the 
undisturbed velocity over the length of the body), as well as for the more familiar 
ca.se of a body in translational motion, either parallel or normal to its length, 
through fluid a t  rest a t  infinity. 

As might be expected from experience with Stokes flow generally, ‘slender- 
body theory ’ here involves a consideration of the approximate forms of the flow 
fields in the regions near to  and far from one section of the body, and of the con- 
ditions that they be compatible. The version of the theory to be given here is 
mathemat,ically simple, and may appeal to those who, like myself, tend to get 
lost in the details of forma,l inner and outer expansion matching techniques. 
We include in passing the formulae which describe the effect of the meridional 
shape of the body, some of which are already available in print. 

For the present purpose of examining the consequences of a non-circular 
cross-section, i t  is sufficient to  take a straight body (that is, a body which reduces 
to a straight line as the thickness ratio tends to zero). The effect of the 1oca.l cross- 
sectional shape can be determined from a consideration of the local ‘inner’ flow 
alone, and the generalization of the theory to include curved slender bodies of 
circuhr cross-section recently given by Cox (1  970a) may be adapted to cases of 
non-circular cross-section. 

2. Replacement of the body by a line of Stokeslets 
The basic idea in slender-body theory for Stokes flow is that the disturbance 

motion due to the presence of the body is approximately the same as that due to  
a suit.ably chosen line distribution of Stokeslets. A Stokeslet is a singularity in 
Stokes flow representing the effect of a force applied to the fluid a t  a point, and 
the notion is that  the main effect of an element of length of the slender body on 
the surrounding fluid arises from the resultant force exerted across the boundary 
of that short section of the body. For a force F applied at the origin in an infinite 
body of fluid free from boundaries and other sources of motion, the velocity a t  
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the point x in flow with negligible inertia forces is 

where p is the fluid viscosity. The associated vorticity is 

alxl-1 
4np axk 

-__ Fi € S j k - ,  

which, of all the spherical harmonics of negative degree capable of representing 
a solenoidal axial vector, decreases least rapidly as 1x1 + 00. Thus if Stokeslets 
are distributed over the portion - 1 < x < 1 of the x-axis so that the line density 
of the applied force is F(x), the resulting fluid velocity at point x is 

]dx‘, (2.3) 
(X$ - 2;) (x, - xi) q x ’ )  

( ( X - X ’ ) ~ + +  

where r2 = xi + xz, x; = xi = 0, and x, x‘ are written in place of xl, xi whenever 
possible. The notation is shown in figure 1. 

f 
\ f l -  

x1 or x 
c 

+ 21 c_ 

4 x, or z 

FIGURE 1. Sketch to show notation. 

The rigid body of length 21 whose disturbance motion is to be represented by 
this distribution of Stokeslets encloses the portion - 1 < x < 1 of the x-axis, and 
points on the body surface are given by 

r = R(Ax), (2.4) 

where tan$ = xs/x2 and R/1< 1. The cross-sectional shape is not necessarily 
independent of x. We choose the axes of reference SO that the body is stationary. 
The undisturbed fluid velocity (that is, the velocity which the fluid would have 
in the absence of the body) at  cross-section x of the body will be written as 
-U(x), where U is a vector of uniform direction whose magnitude is either 
uniform or a linear function of x. The case in which U is uniform corresponds 
to translational motion of the body with velocity U through fluid at rest at 
infinity (with speed U, in the longitudinal or end-on direction, and components 
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U,, U, in the transverse plane); the case U = (0 ,  Q32, - QZx) corresponds, with 
an adequate approximation, to rotation of the body about its midpoint with 
angular velocity (0 ,  Q,, Q,) relative to the fluid a t  infinity; and the case 

U = ( -  e , ,x ,  0,O) 

corresponds to  the body being immersed in a pure straining motion with rate 
of extension ell in the direction of the body length (extension of the fluid in 
directions normal to  the body length being affected negligibly by the presence 
of the body). All these different cases are of course superposable. 

I n  order to  satisfy the no-slip condition the resultant fluid velocity v - U 
must be zero at the body surface. Thus the unknown function F(x’) representing 
the line density of Stokeslet strength must be chosen so that the disturbance 
velocity v(x) given by (2.3) is equal to U(x) a t  all points on the body surface 
defined by (2.4). The procedure suggested by Burgers (1938) (for a body of 
circular cross-section) was to  write F(x’) as a polynomial of low degree and to 
determine the coefficients in a way which optimized the satisfaction of this 
boundary condition; and Broersma (1960a, b )  improved this procedure numeric- 
ally by increasing the degree of the polynomial. 

It is impossible in general to satisfy the no-slip condition a t  all points of the 
body surface exactly by means of a line distribution of Stokeslets alone on the 
x-axis. Stokeslet doublets (that is, force doublets) and higher order singularities 
are also needed, even in the case of a body with axial symmetry (in transverse 
motion). Howevcr, we shall see that the distribution of Stokeslet strength can 
be determined to a certain order of approximation, when the body is slender, 
without the need for explicit introduction of the other types of singularity. It 
also happens that most of the flow parameters of greatest practical interest, 
such as the total force or couple which the body must exert on the fluid to sustain 
the specified motion, are determined by the Stokeslet distribution alone. (The 
period of orbit of a slender body in a simple shearing motion is an exception, 
as Cox (1970b) has pointed out.) For this reason we consider here only the 
Stokeslet distribution on the x-axis, with the implication that representation 
of the body can be achieved to a certain order of approximation only. 

It is evident that if Fi(x’) has the same sign over a large part of the range 
-1 < x’ < I, the fist of the two terms in the integrand of (2.3) may lead to 
divergence of the integral, as r l l  + 0 for fixed x/l, and likewise the second term 
when i = 1 ; and if Fi(x‘) were constant, the divergence would be as log ZIT. That 
is to say, important contributions to  the induced velocity due to  the line dis- 
tribution of Stokeslets a t  positions close to the axis are made by both the neigh- 
bouring and the distant Stokeslets, a t  any rate for bodies whose shape is such that 
the Stokeslet strength is distributednot too unevenly. (This isof course in contrast 
to the dominance of nearby singularities in slender-body theory for irrotational 
flow.) It is a feature of this logarithmic behaviour that the induced velocity due 
to the whole Stokeslet distribution varies by a relatively small amount only, 
over the perimeter of a cross-section of the body. This is the key to the use of a 
line distribution of Stokeslets as a means of satisfying the no-slip condition, 
to  the crudest approximation, at points on the surface of a slender body of 
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arbitrary cross-section. It is possible to choose the Stokeslet strength distribution 
so that the velocity due to the line of Stokeslets cancels the undisturbed velocity 
approximately, not just at particular points near the axis (for -1  < x < 1 ) ,  but 
everywhere near the axis. 

3. The first approximation to the Stokeslet strength distribution 
The integral equation represented by (2.3) with v = U at r = R cannot be 

solved directly, but we perceive the nature of the asymptotic solution (as 
R/1+ 0) for the case of translational motion of the body from a consideration 
of the integrals 

1 r2-n ( x  - 2’)” dx’ s - 1 ((z - x1)2 + rZ>T 
(n = 0 , l  or 2), 

dx’ 
I:, = 

all of which can be evaluated by elementary methods. We then find that, when 

(l -x2’”””.i rlR0 

21 
I N” 2log-+2log 

RO 
I;, M 2, I;% 0, I ;  M I - 2 ,  

with errors of order r2/12 in the case of I, I& I; and of order r/l  in the case of I;. 
(The errors are larger in a small region near the end of a blunt body where 
either r/(Z-x) or r/ (E+z)  is not small, but we shall ignore any such exceptions 
on the intuitive grounds that change of the body shape in this region has negli- 
gible effect on the integral force parameters.) Here R, is an arbitrary length 
chosen to be representative in some way of the values of R over the surface of 
the body; for example 2nR0 might be the perimeter of the cross-section at x = 0. 
The primary small quantity in the subsequent analysis is 

e = (log2Z/Ro)-1. 

Hence, for a case in which the Stokeslet strength density is uniform, the induced 
velocity (2.3) a t  a position for which rjl < 1 becomes 

where r is the vector in the transverse plane with components (z2,x3) and ri 
is taken as zero when i = 1.  The dominant term on the right-hand side is that 
involving the factor 1/e, and 

It appears then that the choice of a uniform line density of Stokeslet strength, 

(3.4) 
with Fl = ZrepU,, Fi = 4rrepUi (i = 2 or 3), 

gives longitudinal and transverse velocity components which to the first approxi- 
mation are uniform over (and near) the body surface and equal to the values 
corresponding to translational motion of the body. This statement is as valid 
for bodies of non-circular cross-section as for axisymmetric bodies, and it also 
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holds independently of the way in which the cross-section varies along the length. 
Additions to the Stokeslet strength density (3.4) of magnitude e2pU cause changes 
in the induced velocity of magnitude eU,  and so the magnitude of the error in 
the distribution of F given by (3.4) is pUO(e2) .  

Hence, when a slender body of length 21 is in translational motion through 
fluid at  rest at  infinity with velocity (Ul,U2,U3),  of magnitude U ,  the force 
exerted on the fluid by the body is 

U 

Here R, is a length which is still arbitrary aside from being comparable with 
the body thickness; different choices of Ro affect only the error term in (3.5). 
We see that the ratio of the drag for motion in any transverse direction to the 
drag for longitudinal motion of the body a t  the same speed is 

2 + O(e), 

which extends to bodies of arbitrary cross-section the striking result previously 
obtained for axisymmetric bodies (obtained in effect f i s t  by Burgers (1938)). 
This ratio 2 is a direct consequence of the fact that the induced velocity due to 
an isolated Stokeslet is twice as large a t  a point on the axis of symmetry as at 
a point at an equal distance in the transverse direction (see (2.1)). 

Analogous results can be obtained for the case in which I UI varies linearly with 
IL. The trial solution is here & ( X I )  cc x’. As a preliminary we evaluate the integrals 

1 r2-n(x - x‘)n x’ dx‘ 
(12 = 0 , l  or 2),  

x’ dx’ 
{(x - x’)2+ r2}4’ {(x-x1)2+r2}8 

and find that when r i l e  1 

JA z 2x11, J ;  z 0, J i  z J - ( 2 ~ / 1 ) ,  

with errors of order r2/12 in the case of J ,  JA, JL and of order rll in the case of 
J ;  (except perhaps in a small neighbourhood of the ends of the range - 1 < x < I). 
R, is again an arbitrary length chosen to be representative of the values of R. 

Then, for a Stokeslet distribution given by 

F1(x’)/8np = -&e,,~x‘, F, = 0, F3 = 0, (3.6) 

and at positions such that rll < 1, the right-hand side of (2.3) is a vector approxi- 
mately parallel to the x-axis and of magnitude 

(3.7) 

where E = (log 21/R,)-l as before. We see that for Roll < 1 the distribution (3.6) 
is approximately that required to represent a straight slender rigid body, of 
arbitrary cross-section, embedded in a pure straining motion with rate of ex- 
tension ell in the direction of the body length, the error in (3.6) being of magnitude 
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e2e11x’. The aspect of the Stokeslet distribution that is of primary interest in 
this context is in the first integral moment of Fl, giving the net force doublet or 
dipole moment. Minus this integral moment has been termed the ‘stresslet’ 
strength of the body (Batchelor 1970), in view of its connexion with the additional 
bulk stress due to the presence of such a body in suspension in fluid subjected to 
a straining motion (the minus sign arising from the usual convention that a 
normal stress representing a tension is positive), and is found here to  be 

(1 + W). 
1 4n,uPe1, -J-, x‘F1(x’) dx’ = 

3 log 21/R, 

Likewise, for a Stokeslet distribution given by 

P1 = 0, Fi(x’)/8n,u = &dQ2i~l i j~  ( i , j  = 2 or 3), (3-9) 

the induced velocity due to the Stokeslets is approximately a vector in the 
transverse plane with components 

( 1 - X 2 / Z 2 )  a 
Elijnjx+E€lj,Qkx &log i rlR0 

(3.10) 

in the region r/Z < 1.  Thus for R,/1 < 1 the distribution (3.9) is approximately 
that required to represent a straight rigid body of arbitrary cross-section rotating 
with angular velocity (0, a,, Q3) about its mid-point in fluid a t  rest at infinity, 
and the couple exerted on the fluid by the body is 

(3.11) 

I n  both (3.8) and (3.11), different choices of the arbitrary length R, affect only 
the two error terms. 

It will be observed that the relations (3.4) represent correctly the first approxi- 
mation to &(x) for U(x) either constant or a linear function of 5. 

The relations ( 3 4 ,  (3.8) and (3.11) are asymptotic results for quantities of 
practical interest which hold for any shape of the body cross-section and for 
any type of variation of the shape and size of the cross-section along the length 
of the body, even for knobbly bodies such as a (straight) necklace of irregularly 
shaped stones (which may be useful as a model of a macromolecule). This is a 
significant advance in principle, but the working value is severely limited by 
the fact that 1/R, needs to be numerically very large indeed before E is small 
compared with unity (as is apparent from the formula B = (0*69+2*30n)-l for 
ZIR, = lon). It is desirable to obtain some information about the error terms 
in the relations (3.5), (3.8) and (3.11), which is where the effect of the body shape 
enters. Methods of determining approximately terms of order E ~ ,  e3, . . . in the ex- 
pressions (3 .5) ,  (3.8) and (3.11) as a function of the meridional shape of an 
axisymmetric body have already been developed (Tuck 1970; Cox 1970a; Tillett 
1970). Here we wish to see what additional considerations are required when the 
cross-section is not circular. The two kinds of shape effect can in fact be treated 
together, and give rise to  correction terms of comparable magnitude. 
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4. A method of improving the approximation to the Stokeslet strength 
distribution 

In the case of a Stokeslet strength distribution which is either uniform or a 
linear function of x, the first approximation to the induced velocity at points such 
that r / l  < 1 has precisely the same dependence on x. This property holds for 
other smooth forms of the function l$(x), as we may see by writing 

2 q x ’ )  - l$(x) I -z ((x - x’)2 + r2}+ 
dx’ , s - 2 { (x - x’)2 + r2>2 

l$(x’)dx‘ 
1 = 4 ( x ) I +  

where I is the integral found (see (3.1)) to behave as 210g{2(12-x2)4/r} when 
r / l  < 1. Tuck (1964) has made a study of the last integral in (4. l), and has estab- 
lished that, for rll < 1, the effect of deleting the term r2 in the denominator of 
the integrand is to cause an error which is of order 

if derivatives of F(x) of all orders exist for - 1  < x < 1 and is certainly as small 
as IF\ (r l l ) )  provided only that F(x) and its first derivative are bounded and piece- 
wise continuous. We shall assume that at least the latter weaker conditions on 
F(x) are satisficd. Hence when ‘/I < 1 we may write 

with an error which is at least as small as some positive power of r/l  and which 
is therefore smaller than any power of (log 21/r)-l. 

Similar considerations may be applied to the integral formed from the second 
term in the integrand of (2.3). By taking the possible values of i in turn, we find 

(4.3) 
when r / l  < 1, and the largest error involved in this approximation is of order 

Hence, with the aid of (4.2) and (4.3) we may write the velocity due to the line 
of Stokeslets at  positions for which r / l  < 1 as 

correct to the order of any power of (log 21/r)--l; as before, r is a vector in the 
transverse plane with components x2, x,, and x; = xi = 0. 

This equation (4.4), together with the requirement that v(x) = U(x) at 
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r = R($, x), provides a basis for the determination of all terms in an expansion 
of F(x) in powers of e. The leading term is of the form (3.4)) as already noted, 
and this may be used as the start of a reiteration procedure to determine sub- 
sequent terms in turn. 

Consider, for instance, the case of longitudinal motion for a body whose 
cross-section is circular with radius Rx at station x and radius R, at x = 0. The 
no-slip condition at the body surface becomes 

and on writing 
we find immediately that 

Ul(x) cc xn (n = 0 or l),  

f 3 ( x )  and further coefficients may be obtained from the kind of recurrence relation 
given by Tillett (1970) for the case n = 0. 

However, this straight-forward procedure described for the case of longitudinal 
motion and a body of circular cross-section cannot be used in more general 
circumstances, because when the cross-section is non-circular, and also in the 
case of transverse motion for a body which does have circular cross-section, it 
is impossible to satisfy the no-slip condition at the body surface by a suitable 
choice of the Stokeslet strength density F(x). We see this explicitly by writing 

and 2nR, is the perimeter of  the body cross-section at station x; at r = R($, x) 
the right-hand side of (4.8) varies with the azimuthal angle $ and no choice of 
F(x) can eliminate this variation. 

In  these circumstances the right way to amend the distribution of singularities 
is to spread the Stokeslets over the bodysurface.? A procedure which is equivalent 
is to add a t  the x-axis distributions of force doublets, force quadruplets, and 
so on, the accuracy of the representation being greater as the number of different 
types of singularity at  the axis is increased. Now a force multi-pole of order n 
(with n = 1 corresponding to a Stokeslet) at a point induces a velocity field 
which falls off as the ( - n)-power of distance from it, and provided n 3 2 a line 
distribution of such multi-poles at  the x-axis gives a velocity which at  positions 

t It is known from the mathematical theory of Stokes flow described by Oseen (1927) 
and more recently by Ladyzhenskaya (1963) that, in the case of fluid a t  rest at  infinity 
and with a single interior boundary, the velocity and pressure a t  any point in the fluid 
may each be expressed exactly and uniquely as an integral over the interior boundary 
representing the effect of a distribution of surface density of force applied there. 



42 8 G .  K. Batchelor 

such that r / l <  1 is dominated by the multi-pole strength density at the nearby 
portion of the x-axis and which diminishes as (r/R,J-n as r/R, -+ co. Consequently, 
provided the body is so slender that there exists a region in which rll 1 and 
r/R, > 1, the velocity distribution in this region due to the complete set of 
singularities has the following important properties: (1) it is dominated by the 
Stokeslet distribution and so has the form given by (4.8), and ( 2 )  whatever 
residual influence of the higher-order multi-poles at  the x-axis there may be 
comes from the nearby portion of the axis. 

We shall assume that the body cross-section varies sufficiently slowly with x 
for the flow within a neighbourhood of many body diameters from one section 
of the body-the ‘inner ’ flow field-to be approximately independent of x. This 
cylindrical flow field must take the form (4.8), so far as dependence on r and 4 
is concerned, when r/R, % 1.  It proves to be possible to consider this inner flow 
field, as a separate problem of cylindrical flow, on an exact basis, and thereby 
to avoid the explicit introduction of force multi-poles on the x-axis. We shall see 
that the requirement that the inner flow field takes the form (4.8) for r /R,  > 1 
determines the function G(z) uniquely in terms of F(a) and the shape of the 
local cross-section.? The expression (4.9) for G(z) then provides an integral 
equation for F(x) which may be solved by the standard reiteration procedure. 

We consider now the cylindrical flow in the neighbourhood of one section of 
the body. To the order of approximation being considered, the cases of longi- 
tudinal and transverse motion involve only the longitudinal and transverse 
components of F respectively, and since the corresponding inner flow fields 
have slightly different characters we take them separately. 

5. The inner flow field for longitudinal motion 
By longitudinal motion we mean cases in which the undisturbed fluid velocity 

at  the position of the body, -U(x), is parallel to the body length so that 
U = (TIl, 0,O); and 77, may be either uniform or linear in x. The fluid velocity in 
the presence of the body is ~ ( x ) ,  and is zero a t  the body surface. In  the neigh- 
bourhood of one section of the body, u is approximately of the form (ul, 0, 0), with 
u1 independent of x. We propose to examine the dependence of u1 on the co- 
ordinates (y, z )  in the lateral plane for this cylindrical flow, in particular when 
r/R, $- 1, where r2 = y2 + z 2  and 2nRx is the perimeter of the local cross-section. 

The governing equation for this case of Stokes flow is 

a2w/ay2 + a 2 o / a 2 2  = 0,  (5.1) 

where o = (0, au,/az, - &Jay) is the fluid vorticity (derivatives with respect to x 
being neglected). The body surface is the source of vorticity, and the leading 
term in the series of circular harmonics of negative degree which represents o 
is of degree - 1. Thus, 

w z F x r/2n,ur2 for r/R,  9 1, (5 .2 )  

t There are interesting resemblances here t o  slender-body theory for non-axisymmetric 
bodies in irrotational flow, as described by Ward (1955). 
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where r = (0, y, z )  and F = (Fl, 0,O) is a vector constant (although strictly 
speaking F, like R,, is a slowly varying function of x). The corresponding 
expression for the velocity, relative to axes fixed in the body, is 

for r/Rx 9 1, where K is a dimensionless constant. In the cylindrical flow field 
near the body, the local force (in the x-direction) exerted on the fluid by unit 
length of the body is equal to 

- $,4aui/an) ds, 

where s and n represent distance along and normal to any closed curve in the 
cross-sectional plane which encloses the body, and on choosing the curve as a 
circle of radius r for which (5.3) holds we see that this force per unit length is Fl. 

The problem of determining the inner flow, near a section of the body where 
the cross-sectional perimeter is 2nR, and the longitudinal force per unit length 
exerted by the body is Fl, is thus as follows. With neglect of x-derivatives again, 
the equation for the fluid velocity is 

a2ulpy2 + a2ul/azz = 0, (5.4) 

and the boundary conditions are (1) u1 = 0 at the body surface and (2) u1 takes 
the form (5.3) for r/R, $ 1. This is a two-dimensional potential problem in which 
FJ,u plays the part of a cyclic constant for the doubly-connected region outside 
the body surface and which is over-determined if K is given. In  other words, 
K is found as a part of the solution and depends only on the shape of the body 
cross-section. In  the particular case of a circular cross-section, u1 oc log Rx/r over 
the whole of the inner flow region, and the boundary condition u1 = 0 a t  r = R, 
gives K = 0. Thus, for any non-circular cross-section we may write 

u -1 log-fO - - 2np ( k? (?)) (5.5) 

for rlR, 9 1, where log k = K ,  and regard kRs as the radius of the circle which 
is equivalent to this cross-section in the sense that a given total longitudinal 
force a t  the surface of a circular cylinder of this radius produces the same flow 
field in the region rlRx B 1. 

This type of inner flow field and the associated idea of an equivalent circular 
section have already been described, in the context of time-dependent flow due 
to a rigid cylinder of great length moving parallel to a generator with steady 
speed in fluid at rest at  infinity (Batchelor 1954). The value of k can be found 
numerically for any cross-sectional shape by determining the conformal trans- 
formation that converts the boundary into a circle without distortion of the 
region of the complex plane far from the origin, and the values for several 
special cases are given in that paper. The most useful result is that for an ellipse 
with semi-diameters b and c the radius of the equivalent circle is 

kR, = +(b + c). (5.6) 

The value of k here varies monotonically between in( = 0.785) for a flat plate 
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and 1.0 for a circle as clb increases from 0 to 1. Exactly the same range of values 
of k is traversed monotonically in the case of a regular polygon of n sides as n 
varies from n = 2 (again a flat plate) to n + co, the value for a circle being reached 
in the limit. It seems likely that for any cross-sectional shape not too different 
from a regular figure the value of k lies between 0-785 and 1.0 (the corresponding 
range of values of K being from - 0.242 to 0). The smallness of this range of 
values of k is a consequence of our choice of the perimeter (divided by 2n) as 
the reference length. If we had chosen the square root of the area of the cross- 
section as the reference length, k would have been infinite for a flat plate. 

A cross-sectional shape which has many deep indentations is in a different 
class. An example for which an appropriate conformal transformation can be 
found with a little trouble is a ‘star) consisting of n flat plates all of length a 
which have a common end point and equal angular separation 27r/n, the result 
being that the radius of the equivalent circle is 

kR, = 2-2lna. 

The result for a single flat plate is recovered when n = 1 or 2,  and then as n in- 
creases the value of kR, gradually approaches a;  when n is large, the fluid in the 
space between neighbouring arms of the star is stagnant and the equivalent 
circle is approximately the circumscribing circle. The wetted perimeter divided 
by 27r is here na/n and is less appropriate as the reference length. A better choice 
for 27rR, would be the ‘convex perimeter’, that is, the length of a taut string 
passing round the cross-section, equal to 2na sinnln, which gives k + 1 as n -+ co; 
adoption of this definition of R, would of course not change any of the above 
results for wholly convex plane figures.t 

The matching of the outer section of the inner flow field, given by (5.3) or 
( 5 . 5 ) ,  with the inner section of the outer flow field, represented by (4.8) (with 
i = I) ,  is now straight-forward. The right-hand side of (4.8) represents the 
velocity, relative to the body, given by the undisturbed flow together with the 
whole line of Stokeslets, and is identical, when i = 1, with the right-hand side of 
(5.3) provided we choose 

(6.7) 

The two expressions for G,(x), (4.9) and (5.7), now yield an integral equation for 
F’(x) which is correct to the order of any power of c, and which is equivalent to 
satisfaction of the no-slip condition a t  the circle T = kR, rather than at the 
actual surface of the body. 

It appears that, as a consequence of the smoothing action of vorticity diffusion, 
the velocity distribution in the fluid near one section of the body tends to an 
axisymmetric form with increasing distance from the x-axis and, before the 
outer flow region is reached, becomes the same as if the body were of circular 
cross-section. For this reason, the total Stokeslet strength per unit length of the 
x-axis, and the radius of the circular section over whose surface this Stokeslet 
strength may be regarded as being spread, are all that matter so far as the match- 
ing of the inner and outer flows is concerned; and higher approximations to the 

t I am indebted to Dr J. R. A. Pearson for this suggestion. 

G,(z) = 2F1K = 2 4  log Ic. 
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Stokeslet strength distribution, correct to some power of 8, depend on the 
local cross-section only through the dependence on the radius kRz of the local 
equivalent circle. 

6. The inner flow field for transverse motion 
Similar considerations apply to the approximately two-dimensional flow, in 

the neighbourhood of one section of the body, associated with the components 
of velocity and force in the cross-sectional plane. The vorticity equation in the 
inner region is again of the Laplacian form (5.1), although the vorticity vector 
is now (q, 0, 0), with 

The nearby body surface is again the dominant source of vorticity, and the 
asymptotic form of the vorticity distribution is like (5.2) although in the present 
case the constant F has components (0, F2, F3) so that 

w1 = au3/ay- au,laz. 

Fz-F 
idl E 2- 3 y  for rIRx 9 1. 

27rpr2 

The two-dimensional velocity vector which is solenoidal and whose curl has 
the above form is 

(i,j = 20r 3), (6.1) 

for r/Rx 1, where r2 = y, r3 = z as before, and Kij  is a dimensionless tensor 
constant (which may of course he a function of x). The equation of motion shows 
that the corresponding expression for the pressure is 

F.r  
P =Po+% 

for rlR, 9 1. The corresponding expression for the stress tensor is - rirjr, Fk/nr4, 
from which we find that the total force, per unit length in the x-direction, exerted 
across a circle of radius sufficiently large for this asymptotic relation to be 
applicable is F; thus the local force per unit length exerted by the body on the 
fluid is F. Any couple which is exerted on the fluid by the body affects only the 
term of order RJr in the expression for u. 

The equation describing the inner flow, which states simply that the x- 
component of vorticity is a harmonic function in two dimensions, is here most 
conveniently expressed in terms of a stream function @. We have 

and the inner boundary conditions are 

$ = 0, n . V $  = 0 

on the closed curve in the (y, 2)-plane representing the body surface. The outer 
boundary condition, obtained from (6.1), is 

477P@ = ( 2 4  - 9F3) (1% (Rzh) + 41 + W 2 j  - Y K , )  $ (6.4) 
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for r/R, $= 1. According to the theory of two-dimensional slow viscous motion, 
a solution to this problem for a given shape of the inner boundary may be found 
only when the two-dimensional tensor Ki j  has a certain value. 

We may prove that Kii is a symmetric tensor by the kind of argument used 
for the tensor coefficient in the relation between force and translational velocity 
of a body finite in all three dimensions. The integral 

(ui a& - u; crij) nj dA 

has the same value for any curve enclosing the body in the ( y ,  2)-plane, where 
ui, aii and ul, aij are the velocity and stress at  any point in the fluid corresponding 
to the values F and F‘ of the force on (unit length of) the body. With axes fixed 
in the body, the integral is zero for the case of a curve coinciding with the body 
surface; and so is zero for all closed curves, including one at  a large distance from 
the origin on which the velocity and stress have the above asymptotic forms. 
The symmetry of Kij then follows after substitution of these forms in the 
integrand. 

It is not as easy to find Kij explicitly for a given cross-section of the body as 
it was to determine the analogous scalar constant K in the case of longitudinal 
motion. Moreover, it is evident that, since Kij must take the special form 
const. x 8ij in the case of a circular cross-section for reasons of symmetry, it is 
not possible here to represent an arbitrary cross-section by a circle of suitably 
chosen radius. We need as a standard some cross-section whose shape and size 
are specified by as many scalar quantities as the number of independent com- 
ponents of Kii, that is, an ellipse. It so happens that an explicit solution to the 
above problem for the case of an elliptic boundary is available (Berry & Swain 
1923). For an ellipse whose semi-diameters are b and c (with b > c ) ,  and with 
y’ and z’ axes parallel to the principal diameters, the stream function is 

where y‘ = (b2 - c2)4 cosh ( cos 7, z’ = (b2 - c2)& sinh sin 7, and the elliptic bound- 
ary is given by 

This expression for $ obviously satisfies the inner boundary conditions (6.3). 
Since 

when rl(b2 - c2)% $= 1,  we see that at  large distances from the ellipse (6.5) becomes 

or, with general axes such that the direction of the larger principal diameter of 
the ellipse ( 2 b )  is given by the unit vector p, 
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This is of the expected form (6.4), and it appears that, for an ellipse characterized 
by b, c and the unit vector @, 

b+c l b - c  b - c  Kii = aii log-+- - ( 2R, 2 b + c  

The components of the tensor Kii for an arbitrary cross-section may now be 
regarded as corresponding to values of b ,  c and p according to the relation (6.8). 
The value of Kii,’and so of the major and minor semi-diameters and the directions 
of the principal diameters of the equivalent ellipse, is to be determined from an 
investigation of a solution of the biharmonic equation for the inner boundary 
shape in question. For many simple cross-sectional shapes it may be sufficient 
to estimate these quantities on crude geometrical grounds. For a circular cross- 
section Kij = 0. 

Again the matching of the r and $-dependences of the asymptotic or outer 
section of the inner flow field, given by (6.1), with the inner section of the outer 
flow field, given by (4.8) (with i = 2 or 3), is straightforward. Matching is 
achieved if we choose 

b-c 
G,(x) = Fi(Kii-&3ii) = Fi log---- -P.p.F.- ( 1;; b y e )  ’ 3 b + ~  (i,j = 2 or 3), (6.9) 

where the quantities b,  c and p refer to  the ellipse that is equivalent to the local 
cross-section. 

A significant feature of the case of transverse motion is that, in any approxima- 
tion to F better than that given in § 3, F is not necessarily parallel to U for a body 
of non-circular cross-section. 

7. The expression for F for a non-axisymmetric body 
We may now return to  the question of calculation of the function F(x) repre- 

senting the force density on the x-axis. The relation (4.9) together with the 
matching results (5.7) and (6.9) provide an integral equation for F(x) which is 
correct to the order of any power of e and which can be solved for F reiteratively 
as a power series in e. The tensorial character of the various terms in this integral 
equation is a little clearer if we continue to take separately the cases of longi- 
tudinal and transverse motion, whence 

1 1 I$(x’)-&(x) +-s 2 - 2  Ix’-xl dx‘ (i,j = 2 or 3). (7.2) 

In these equations K = logk, kR, is the radius of the equivalent circle for 
longitudinal motion, and Kij is given in terms of the properties of the equivalent 
ellipse for transverse motion by (6.8). K ,  Kij ,  R, and U may all be functions 
of x. 

28 FLM 44 
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We shall confine attention to undisturbed velocity distributions of the kind 

Ui cc xn (n = 0 or 1). 

A useful result which is relevant in these circumstances is that 

if (and only if) n = 0 or 1. 
So far as the case of longitudinal motion is concerned, the integral equation 

is identical with that for a body whose cross-section is circular with radius kR, 
(for compare (4.5) and (7.1)), and so the details of the recurrence relation for the 
higher coefficients can be taken dircctly from the paper by Tillett (1970). There 
is however B possible numerical improvement on a series of the form (4.7) which 
was not noticed by Cox (1970) or Tillett (1970) and which may be pointed out 
here. In the particular case of a body which is longitudinally elliptic in the 
sense that 

and for which K is independent of x (notice that neither of these conditions places 
any restriction on the shape of the cross-section), equation (7.1) can be satisfied 
exudy  by the choice F'(x) cc U,(x) (this is where (7.3) is used); there is thus no 
need for reiteration in this case and we have 

(7.4) 

correct to the order of a.ny power of E .  This suggests that as an alternative to 
(4.7) we should expand F,(x) for a general body in the form? 

1 - E log [ (1 - x2/Z2)*/(BS/Ro)] 
1 - s(n + 4 + K )  

(7.5) 

F,(x) = 277pu1(x)E 

the advantage of which is that the uilkiiown functions g3(x), g4(x), . . . all vanish in 
the case of a body for which (1 - x2/Z2) i/Rz and K are both independent of x and 
may be expected to be small when the body shape is nearly of this kind. The 
expression for g3(x) is 

1 u; P' - u, P dx,, 
I X f - X I  (7.6) 

and the recurrence relation is 

t The position of the log term, which vanishes for a longitudinally elliptic body, is 
arbitrary, and since this term can have largc magnitude, and be of either sign, near each 
end of the body, we place i t  in the numerator to avoid the norL-integrable singularity in 
F l ( z )  which would arise from the vanishing of the denominator at  two points near the ends 
of the range 1 z I < 1. 
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for m 2 3, where 

and a prime to a symbol denotes the value at  X I .  

In  the case of transverse motion, the solution for F,(x) is a little more com- 
plicated as a consequence of the difference between the directions of the vectors 
U and F in the transverse plane. The difference in direction is zero for a circular 
cross-section, and so the results of Tillett (1970) and Cox (1970) cannot be taken 
over so directly as in the case of longitudinal motion. We again take advantage 
of the fact that an exact solution of the integral equation can be obtained when 
the body is longitudinally elliptic and Kij  is independent of 2, the solution of 
(7.2) in that case being 

E(x)  = 4n,uQTij (i,j = 2 or 3), (7.9) 

correct to the order of any power of 8, where Tij is an inverse tensor defined 
by the relation (7.10) 

The expansion corresponding to (7.5) for a general body is then 

where cj is still defined by the relation (7.10) and is now a function of x; the 
functions g$), g$', ... all vanish in the case of a body for which (1 -x2/l2)*/Rx 
and Kjk  are both independent of z, and may be expected to be small for a body 
shape nearly of this kind. Substitution of (7.11) in (7.2) and expansion of Tij in 
powers of 8 then gives an expression for 9;;) and also a recurrence relation be- 
tween g$+l) and g\?) for m 3 3 similar to (7.7), but these are probably too com- 
plicated to be useful and will not be displayed here. The complexity is mainly a 
consequence of the inclusion of slender bodies with twist. In a case in which the 
directions of the principal axes of the (two-dimensional) tensor Kij  are indepen- 
dent of x, the choice of these axes as the axes of reference (so that p2 = 1, 
p3 = 0) reduces to zero the non-diagonal components of 5!&. and g$). The expan- 
sion then becomes 

with a similar expression for P3(x), and the expressions for gii), g&f1) and gh:), 
g&+l) are of exactly the same form as those for g3 and g,,, given by (7.6), (7.7) 
and (7.8) except that K + Q in the latter relations should be replaced by K2,-  4 
or K,, - Q. 

8. The integral force parameters 
It remains to give expressions for the various integral force parameters, to 

note their values for some particular body shapes, and to check their consistency 
with the exact results available for an ellipsoidal body. 

2R-2 
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The following expressions (8.1)-( 8.6) for force parameters are approximations 
with an error of order E3 in general, where E = (log 2Z/BO)-l, and correction terms 
of the order of I? and of any higher power of E may be calculated from the 
formulae given in 5 7 .  All such correction terms are zero in the case of a body for 
which the following conditions are satisfied : 

(i) (1 - x2/12)i R,,/Rx = 1 for all x (a ‘longitudinally elliptic ’ body), 
(ii) K and Kij are independent of x (a sufficient condition for which is that the 

ex-oss-section has the same shape and orientation, although not the same size, 
for all x). 

The force that must be applied to a body in order to sustain translational 
motion of the body with velocity (U,, 0,O) through fluid a t  rest at  infinity is 
found from (7.5), with n = 0, to be 

where K = logk, ER, is the radius of the circle equivalent to the cross-section 
at  station x (see 9 5 ) ,  and R, is the perimeter of the cross-section a t  station x. 

The force required for translational motion with velocity (0, U,, U,) may be 
found from (7 .11)  with n = 0. Provided that the directions of the principal 
axes of Kij are independent of x we may adopt these as the axes of reference and 
use (7.12) to find 

with a similar expression for F3 ,where Kij is given in terms of the geometry of 
the ellipse equivalent to the cross-section a t  station x by (6.8) (with P2 = 1, 

The stresslet strength corresponding to a body immersed in a pure straining 
motion with (undisturbed) rate of extension el, in the x-direction is found from 
(7 .5 ) ,  with U, = - ellx and n = 1, to be 

P 3  = 0). 

1 2 1 o g  [( 1 - x2/12)*/(R,/Bo)] 1 
x2dz  (8.3) 

1-1  l - € ( K + $ )  Y,, = - x~, (x)  dx = 2npe,,c 

In  the case of a body which is not symmetrical about the transverse plane a t  
x = 0, it may happen that, when the body is suspended freely in a pure strain- 
ing motion, the point of the body that moves with the velocity of the undis- 
turbed fluid is not the mid-point but is a t  x = al. The number a must be of 

order E and may be calculated from the requirement that Pl(x)  dx = 0. In  

these circumstances the expression for the Stokeslet strength density contains 
an additional term arising from a superposed translational velocity of the body 
of magnitude ale,, in the x-direction. However, this additional term affects the 
expression for Y,, only to order e3 and so (8.3) remains correct to the order of 
€2. 

The couple about the mid-point (at x = 0) which must be applied to a body 
to sustain rotational motion with angular velocity (0, SZ,, Q3), with the mid-point 

SI 
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held fixed, may be found from (7.11) with Ui = elij Qjx and n = 1. Provided 
again that the directions of the principal axes of K i j  are independent of x, we 
may use (7.12) to find 

I 1 - E log [ ( 1 - x2/Z2)*/( R,.Ro)] 
z2dq  (8.4) 

1 - l  1 - e(K33 -I- 8) 
2z2 = - 

with a similar expression for $P3. 
In  the case of a body which is not symmetrical about the transverse plane 

through x = 0,  translational motion in the transverse direction will require the 
application of a couple of order e2; and we find from (7.1 l), with constant and 
n = 0,  that the couple about the mid-point of the body is 

€iiljxq.(x)dx = 47rpukeilj€ (1_r2’z2)’) !&(x)dx, (8.5) 
RJRO 

where Tij(.) is defined by (7.10). Likewise in these circumstances there is a 
non-zero force required to sustain rotation of the body with angular velocity 
(0, SZ,, Q,) about the mid-point, which may be calculated from (7.11), with 
Q = elijSZjz and n = 1; but no new calculation is needed, because there is a 
general theorem (Happel & Brenner 1965, ch. 5) which says that, if the relation 
(8.5) be written as 

2; = Qijq. ( i , j  = 2 or 3), 

the force required to sustain a pure rotation is simply 

(i,j = 2 or 3). S; = Qj,Qj 
The component of this force in the direction of the angular velocity vector is 
non-zero in general, showing that the rotating body is capable of producing 
thrust (albeit inefficiently) like a propeller. 

In  the case of a body with circular cross-section, K = 0 and Kij = 0. The 
expressions (8.1) and (8.2) for the total force in translational motion then agree, 
to the order of e2, with results obtained by Cox ( 1 9 7 0 ~ )  and Tillett (1970); and 
the expression (8.4) for the couple required to sustain rotational motion agrees 
with a result given by Cox (1970b). These authors express their results as power 
series in E ,  but, as indicated above, the forms (8.1), etc., are likely to give more 
accurate results than a series expansion terminating in the term of order e2. 

A particular local cross-sectional shape of importance is an ellipse, which 
gives several useful special cases as the ratio of the semi-diameters b and c is 
varied. For an ellime 

where E is the complete elliptic integral of the second kind and whose values are 
available in tables. (A simpler formula for R, which is accurate to within a few 
per cent when Q c/b < 1, and which is worst at  c/b = 0 where it is not needed 
but would give a value 11 per cent too large, is R, M (&b2+ &c2)*.) The expression 
(6.8) for K ,  is already in terms of the equivalent ellipse and SO is immediately 
applicable to this case. A cross-section in the form of a flat plate of width 2b 
is obtained by putting 



438 G. K.  Batchelor 

It is worth noticing that, contrary to what might be inferred from formulae for 
slender bodies with circular cross-section, none of the force integra.ls vanishes 
in the case of a body whose cross-section is everywhere simply a line and whose 
volume is zero; as remarked earlier, the inner flow field is determined more by 
the perimeter of the cross-section than by its area. 

When the body is an ellipsoid with semi-diameters 1, b,, c, (1 3 b,, c,), the form- 
ulae (8.1), (8.2), (8.3) and (8.4) are correct to the order of any power of e and 
become 

41 

(8.10) 

with similar expressions for F3 and p3; it  will be recalled that the axes of 
reference are parallel to the principal axes of the ellipsoid. 

A complete set of exact results is available for this case of an ellipsoidal body 
and may be used to uheck the expressions obtained from slender-body theory. 
The formula for the force required to translate an ellipsoid is given by Lamb 
(1932, 8 339) in terms of ellipsoidal potential functions, and it may be shown by 
straight-forward algebra that when 19 b,,c, the components of this force are 
approximated by (8.7) and (8.8) with an error which is of smaller order than any 
power of 8. The flow due t o  a stationary rigid ellipsoid immcrsed in infinite 
fluid whose undisturbed velocity is a linear function of position and vanishes 
a t  the position of the centre of the ellipsoid has been calculated by Jeffery (1922)’ 
in terms of the same ellipsoidal potential functions. Formulae for the net sti-csslet 
strength in a pure straining motion and for the couple required to maintain 
relative rotation can be extracted from Jeffery’s results, and have been given 
explicitly in a recent paper (Batchelor 1970). The formulae are rather lengthy, 
but# their asymptotic forms for 1/(b,+cO) --> co may be obtained without much 
difficulty and are found to confirm the above relations (8.9) and (8.10). 

A cylindrical body is also of special interest in view of its convenience for 
experimental purposes. I n  this case RJR, = I ,  K and Kij  are independent of 
x, and the above expressions for the integral force parameters can be evaluated 
in closed form. It also proves to be possible t o  evaluate the integrals of the 
&terms in (7.5) and (7.12), and since this appears not to have been noticed by 
previous writers we give below expressions correct to the order of e3: 

(8.11) 

(8.12) 
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(8.13) 

with expressions for S3 and 9, similar to those for 2K2 and dp2, and again the 
axes of reference in the transverse plane coincide with the principal axes of 
Kij .  The symbol H,, (m = 0 or 2; n = 1 or 2) is a number defined by 

and has the following values (obtained analytically in the case of n = 1, and 
by numerical integration for n = 2): 

H,, = - 0.307, 

Ho2 = 0.272, 

H2, = - 0.640, 

HZ2 = 0.699. 

The formulae (8.11)-(8.14) emphasize that, for a body as far from being longi- 
tudinally elliptic as is a cylinder, the numerical accuracy of the approximations 
correct to the order of e2 developed by Burgers (1938) and subsequent authors 
(for a circular cross-section) is rather limited unless Z/Ro is exceeding large. 

I am indebted to Dr E. 0. Tuck for useful comments on this work. 
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